install.packages("lme4")lines env y
L1 env1 66.72533
L2 env1 53.82899
L3 env1 58.04559
L4 env1 63.09452
L5 env1 57.59054
L6 env1 61.37506
library(lme4)
data=read.table("data_blup.txt",header = T)
head(data)
data$lines=factor(data$lines)
data$env=factor(data$env)
blp=lmer(y~(1|env)+(1|lines),data=data)
H=5.509/(5.509+3.481/3)
summary(blp)
## Linear mixed model fit by REML ['lmerMod']
## Formula: y ~ (1 | env) + (1 | lines)
## Data: data
##
## REML criterion at convergence: 2700.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.69680 -0.52821 -0.00762 0.58518 2.53832
##
## Random effects:
## Groups Name Variance Std.Dev.
## lines (Intercept) 5.50859 2.3470
## env (Intercept) 0.09091 0.3015
## Residual 3.48151 1.8659
## Number of obs: 575, groups: lines, 209; env, 3
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 60.8465 0.2511 242.3
blups= ranef(blp)
names(blups)
lines=blups$lines+blp@beta
res=data.frame(id=rownames(lines),blup=lines)
write.table(res,file="data_blup_result.txt",row.names = F,quote = F,sep="\t")
hist(lines[,1],col="#0AB3CA",border="white",xlab="BLUP of lines",main="")
env lines rep y
env1 L1 rep1 373.6640
env1 L2 rep1 526.4561
env1 L3 rep1 544.7073
env1 L4 rep1 602.2171
env1 L5 rep1 573.5111
env1 L6 rep1 415.2294
library(lme4)
data=read.table("data_rep_blup.txt",header = T)
head(data)
data$lines=factor(data$lines)
data$env=factor(data$env)
data$rep=factor(data$rep)
blp=lmer(y~(1|rep%in%env)+(1|env)+(1|lines)+(1|env:lines),data=data,
control=lmerControl(check.nobs.vs.nlev = "ignore",
check.nobs.vs.rankZ = "ignore",
check.nlev.gtr.1 = "ignore",
check.nobs.vs.nRE="ignore"))
H=8154/(8154+9409/3+6121/3/3)
lines=blups$lines+blp@beta
blp.out=data.frame(id=rownames(lines),blp=lines)
write.table(res,file="data_blup_rep_result.txt",row.names = F,quote = F,sep="\t")
summary(blp)
hist(lines[,1],col="#0AB3CA",border="white",xlab="BLUP of lines",main="")
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## y ~ (1 | rep %in% env) + (1 | env) + (1 | lines) + (1 | env:lines)
## Data: data
## Control:
## lmerControl(check.nobs.vs.nlev = "ignore", check.nobs.vs.rankZ = "ignore",
## check.nlev.gtr.1 = "ignore", check.nobs.vs.nRE = "ignore")
##
## REML criterion at convergence: 3754.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.6599 -0.3999 0.0071 0.3850 2.8693
##
## Random effects:
## Groups Name Variance Std.Dev.
## env:lines (Intercept) 9409 97.00
## lines (Intercept) 8154 90.30
## env (Intercept) 129802 360.28
## rep %in% env (Intercept) 30449 174.50
## Residual 6121 78.24
## Number of obs: 306, groups:
## env:lines, 102; lines, 34; env, 3; rep %in% env, 1
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 800.0 272.2 2.939
DOI 10.1007/s00122-013-2158-x如果觉得我的文章对您有用,请随意打赏。你的支持将鼓励我继续创作!
